
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.37 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 238

Novel and Efficient approach for Duplicate
Record Detection

Mrs. D. V. LalitaParameswari.1, K. Mounika2

1Sr. Asst. Professor, Dept. of CSE, GNITS, Hyderabad, India
2 M. Tech Student, Dept. of CSE, GNITS, Hyderabad, India

Abstract—Similarity check of real world entities is a
necessary factor in these days which is named as Data
Replica Detection. Time is an critical factor today in
tracking Data Replica Detection for large data sets,
without having impact over quality of Dataset. In this
system primarily introduce two Data Replica Detection
algorithms, where in these contribute enhanced
procedural standards in finding Data Replication at
limited execution periods. This system contribute better
improvised state of time than conventional techniques. We
propose two Data duplicate record detection algorithms
namely progressive sorted neighbourhood method
(PSNM), which performs best on small and almost clean
datasets, progressive blocking (PB), and parallel sorted
neighbourhood method which performs best on large and
very grimy datasets. Both enhance the efficiency of
duplicate detection even on very large datasets.
Keywords— Data cleaning, Duplicate detection, Entity
Resolution, Progressiveness.

I. INTRODUCTION
Now-a-days, Databases play a primary role in IT situated
economy. Many industries as well as systems rely on the
accuracy of databases to carry out operations. As a result,
the worth of the data will be saved in the databases; can
have significant price suggestions to a system that relies
on data to operate and perform business. In an error-free
system with exactly clean data, the construction of a
comprehensive view of the information contains linking --
in relational phrases, joining-- two or more tables on their
key fields. Unfortunately, information most commonly
needs a unique, world identifier that may permit such an
Operation. Furthermore, the information is neither
cautiously controlled for outstanding nor defined in a
consistent means throughout distinctive data sources.
[2]Accordingly, information quality is frequently
compromised by using many causes, together with
knowledge entry errors (e.g., studet as an alternative of
student), missing integrity constraints (e.g., enabling
entries), and more than one conventions for recording
information To make things poorer, in independently
managed databases not most effective the values, but the

constitution, semantics and underlying assumptions about
the data could vary as well. The Progressive techniques
may method larger dataset in brief span of time and also
the quality of knowledge is additionally smart relatively.
The Progressive duplicate detection makes it totally
different from the normal approach by yielding additional
advanced results throughout the first termination; the
algorithms of duplicate detection additionally compute
the duplicates at a virtually constant frequency however
the progressive algorithms increase the time because it
finds out the duplicates at the first stage itself. The
proposed system enhances the strength of duplicate
detection even on very massive datasets. The
parameterization complexness for duplicate detection is
created comfortable generally and contributes to the event
of additional user interactive applications.

II. LITERATURE SURVEY
The sorted Neighborhood process depends on the
assumption that replica records can be close in the sorted
record, and accordingly shall be when compared for the
duration of the merge step. The effectiveness of the sorted
neighborhood strategy is totally dependent upon the
contrast key that's selected to sort the records. Typically,
no single key shall be plenty to sort the documents in this
sort of approach that all the matching files may also be
detected. If the error in a file occurs within the unique
discipline or element of the subject that's the fundamental
a part of the sorting key, there's a very small probability
that the file will turn out to be practically an identical
record after sorting. [4]To expand the quantity of identical
records merged, Herna´ndez and Stolfo carried out a
approach for executing a couple of independent runs of
the Sorted-Neighborhood Method by means of using yet
another sorting key and a slightly small window every
time. This process is known as the multi-pass technique.
This method is similar in spirit to the multiple-run
blocking approach described above. Each impartial run
produces a collection of pairs of documents that can be
merged. The final outcomes, including the transitive
closure of the files matched in extraordinary passes, are
due to this fact computed.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.37 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 239

A. Map-Reduce Algorithm
A map reduced algorithm was introduced which has high
affability for scheduling about responsibilities for
dynamic load balancing. [6]The author Oktie, presents the
Stringer framework that gives an evaluation arrangement
to understanding what hindrances remain towards the
objective of really flexible as well as broadly useful
duplication recognition calculations. Few unrestrained
bunch algorithms are assessed for copy discovery by
broad examinations over totally different arrangements of
string information with numerous attributes. A theme was
introduced to combine multisource data. The results from
the preliminary examinations are according that was taken
from four card inventory databases that rescale to over ten
million records are according within the paper.
B. Sorted Neighborhood Method with Map-Reduce
This method introduces new approaches reduce time.

Fig.1: Example Execution of SNM

Sorted Neighborhood Method (SNM) is a popular
blocking approach that works as follows;
A blocking key K is determined for each of n entities.
Generally the concatenated prefixes of a few attributes
form the blocking key. Afterwards the entities are sorted
with the aid of this blocking key. A window of a fixed
size w is then forward over the sorted records & in each
step all entities within the window, i.e., entities inside a
distance of w−1, are when put next. Above figure shows
a SNM example execution for a window size of w = 3.
This is the time consuming process.
C. Incremental Adaptive SNM

Fig.2: Incremental Adaptive SNM

The fundamental thought is to measure whether records in
a small neighborhood are close or sparse and if there are
rooms to develop/shrink within the window, and then the
window size is extended or decreased dynamically. In
order to measure the record distribution within a window,
it appears as if we need to measure the distances between
all of the records within the window. If the distance
between the primary and final record satisfies
dist(r1,rw1), the place φ is the distance threshold. This
distance indicates that files within the present window are
virtually every other, so there's still room to enlarge the
window size to find more abilities duplicate records. In
any other case the window must be retrenched.

III. FRAMEWORK
A. Duplicate Detection Architecture

Fig.3: Duplicate Detection System

For instance, if we take an online shopping database, in
that numbers of catalogues are there and number of
employees is enter the data into the database. So, there is
possible to enter the same data number of times. That is
referred as duplicate data. If this duplicate data is
increased in the database then there is no space for other
information means here reduces the storage space of the
database. This is the major problem of duplicate data. To
overcome this problem, there are various approaches but
those are not efficient as well as they are time consuming
approaches. In fig3, first the complete data has to be
collected from databases. After that, our system need to
select pairs of data and compare those pairs. Which pairs
are duplicates those duplicates are clustered into a group.
Like this system can detect and remove the duplicate data.
The main objective of this paper is to detect duplicate
data and count the duplicates in the large datasets within
the less time. For that in this paper, we propose two new
methods to detect the duplicate data as well as count the
duplicates in the complete dataset as a parallel. Those two
algorithms are;
1. Progressive Sorted Neighborhood Method (PSNM)
2. Progressive Blocking (PB)
And these two are generalized by the existing sorted
neighborhood method. In existing method we got the
good quality duplicate data but it is very time consuming.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.37 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 240

Hence, this paper introduce the two progressive and
parallel methods. These two are detect the duplicates
within in the milliseconds.
B. Sorting Key Selection
In this project we are sorting the dataset by using the
magpie sorting. In these sorting methods, we need to
select the sorting key to sort the dataset through that key.
Importance of this sorting key is, we are mostly applying
these two algorithms on the large datasets means those are
in thousands and lakh of records are stored in the dataset.
But, sometimes user needs deduplication and detect the
duplicate count on only particular data. This type of
situations, we need a sorting. Without sorting key it is
difficult to sort the data from dataset.
For selecting the sorting we propose an Attribute
Concurrency method. Through this method we can select
the best key for sorting. An attribute concurrency method
works based on the multi-pass execution method. This
multi-pass method executes the multiple keys in each
pass. Attribute Concurrency method we apply to the
progressive sorted neighborhood method as well as
progressive blocking.

C. Progressive Sorted Neighborhood Method (PSNM)
The algorithm takes five input parameters: D is a
reference to the data, which has not been loaded from disk
yet. The sorting key K defines the attribute or attributes
combination that should be used in the sorting step. W
specifies the maximum window size, which corresponds
to the window size of the traditional sorted neighborhood
method. When using early termination, this parameter can
be set to an optimistically high default value. Parameter I
defines the enlargement interval for the progressive
iterations. For now, assume it has the default value 1. The
last parameter N specifies the number of records in the
dataset. This number can be gleaned in the sorting step,
but we list it as a parameter for presentation purposes.
Progressive Sorted Neighborhood Require: dataset
reference D, sorting key K, window size W, enlargement
interval size I, number of records N
Step 1: procedure PSNM(D, K, W, I, N)
Step 2: pSize← calcPartitionSize(D)
Step 3: pNum←[N/pSize-W + 1)]
Step 4: array order size N as Integer
Step 5: array recs size pSize as Record
Step 6: order ←sortProgressive(D, K, I, pSize, pNum)
Step 7: for currentI← 2 to[W/I]do
Step 8: for currentP ←1 to pNum do
Step 9: recs← loadPartition(D, currentP)
Step 10: for dist belongs to range(currentI, I, W) do
Step 11: for i ←0 to |recs|_ dist do
Step 12: pair←<recs[i], recs[i + dist]>
Step 13: if compare(pair) then

Step 14: emit(pair)
Step 15: lookAhead(pair)
D.Progressive Blocking
The algorithm accepts five input parameters: The dataset
reference D specifies the dataset to be cleaned and the key
attribute or key attribute combination K defines the
sorting. The parameter R limits the maximum block
range, which is the maximum rank-distance of two blocks
in a block pair, and S specifies the size of the blocks.
Finally, N is the size of the input dataset.
Progressive Blocking Require: dataset reference D, key
attribute K, maximum block range R, block size S and
record number N.
Step 1: procedure PB(D, K, R, S, N)
Step 2: pSize ← calcPartitionSize(D)
Step 3: bPerP ← [pSize/S]
Step 4: bNum ← [N/S]
Step 5: pNum ← [bNum/bPerP]
Step 6: array order size N as Integer
Step 7: array blocks size bPerP as <Integer; Record[]>
Step 8: priority queue bPairs as <Integer; Integer;
Integer>
 Step 9: bPairs←{<1,1,->, . . . ,<bNum, bNum,->}
Step 10:order ←sortProgressive(D, K, S, bPerP, bPairs)
Step 11: for i ←0 to pNum - 1 do
Step 12: pBPs ← get(bPairs, i . bPerP, (i+1) . bPerP)
Step 13: blocks ← loadBlocks(pBPs, S, order)
Step 14: compare(blocks, pBPs, order)
Step 15: while bPairs is not empty do
Step 16: pBPs← {}
Step 17: bestBPs← takeBest([bPerP/4], bPairs, R)
Step 18: for bestBP € bestBPs do
Step 19: if bestBP[1] − bestBP[0] < R then
Step 20: pBPs← pBPs U extend(bestBP)
Step 21: blocks ←loadBlocks(pBPs, S, order)
Step 22: compare(blocks, pBPs, order)
Step 23: bPairs ←bPairs U pBPs
Step 24: procedure compare(blocks, pBPs, order)
Step 25: for pBP € pBPs do
Step 26: <dPairs,cNum> comp(pBP, blocks, order)
Step 27: emit(dPairs)
Step 28: pBP[2] ←|dPairs|/ cNum
E.Parallel Sorted Neighborhood Method
In particular, introduced a two phase parallel SNM, which
executes a traditional SNM on balanced, overlapping
partitions. Here, we can instead use our PSNM to
progressively find duplicates in parallel. By using this
method duplicate detection to deliver results even faster
compare to progressive sorted neighborhood method and
progressive blocking.
F. Magpie Sorting:
The sorting of records may be a block preprocessing step
that we are able to already use to (progressively) execute

International Journal of Advanced Engineering

https://dx.doi.org/10.22161/ijaers/3.11.3

www.ijaers.com

some initial comparisons. Magpie Sort may be a naive
algorithm that works the same as Selection
name of this algorithmic rule is imp
larcenous bird that collects beautiful things whereas only
being able to hold a few of them directly. Magpie
repeatedly iterates overall records to search out the
presently top-x smallest ones. Thereby, it inserts each
record into a sorted buffer of length x. whether the buffer
is full; every new inserted record displaces the biggest
record from the list. Each iteration the final order are
often supplemented by following top x records from the
buffer. A record that has been emitted once wo
emitted once more. In fact, Magpie Sort integrates the
complete first progressive iteration of PSNM. Overall,
this sorting method generates only a small overhead, as a
result of the algorithmic rule needs to repeat over the
complete dataset anyway whenever a partition has to be
read from disk.
G. Attribute Concurrency Method:
The best key for locating the duplicate is usually hard to
identify. Selecting good keys can increase the
progressiveness. Multi-pass execution will be applied for
progressive SNM. Key separation isn't required in PB
algorithmic rule. Here all the records are taken and
checked as a parallel processes so as to reduce average
execution time. The records are kept in multiple resources
when splitting. The intermediate duplication resul
intimated instantly when found in any resources and came
back to the most application. Therefore the time
consumption is reduced. Resource consumption is same
as existing system however the information is kept in
multiple RESOURCE memories.

IV. EXPERIMENTAL RESULTS
In this system consider some datasets
DATASETS) which is in different formats like xml ,csv
etc. To detect the duplicates and duplicate count in the
dataset, first select the sorting key and then
‘title’, ‘author’, and some attributes in the dataset
sorting keys. After that choose window size or
Finally implements PSNM, PB& PARALLEL SNM.
The below screen shows that the duplicate count and
duplicate data in the dataset;

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue

https://dx.doi.org/10.22161/ijaers/3.11.37 ISSN: 2349-6495(P) | 2456

Sort may be a naive
algorithm that works the same as Selection Sort. The
name of this algorithmic rule is impressed by the
larcenous bird that collects beautiful things whereas only
being able to hold a few of them directly. Magpie Sort
repeatedly iterates overall records to search out the

x smallest ones. Thereby, it inserts each
d buffer of length x. whether the buffer

is full; every new inserted record displaces the biggest
record from the list. Each iteration the final order are
often supplemented by following top x records from the
buffer. A record that has been emitted once won't be

Sort integrates the
complete first progressive iteration of PSNM. Overall,
this sorting method generates only a small overhead, as a
result of the algorithmic rule needs to repeat over the

enever a partition has to be

The best key for locating the duplicate is usually hard to
identify. Selecting good keys can increase the

pass execution will be applied for
M. Key separation isn't required in PB

algorithmic rule. Here all the records are taken and
checked as a parallel processes so as to reduce average

kept in multiple resources
when splitting. The intermediate duplication results are
intimated instantly when found in any resources and came
back to the most application. Therefore the time
consumption is reduced. Resource consumption is same
as existing system however the information is kept in

RESULTS
In this system consider some datasets (DBLP,CD

which is in different formats like xml ,csv
plicate count in the

rting key and then give the
ome attributes in the dataset are the

window size or block size.
PB& PARALLEL SNM.

The below screen shows that the duplicate count and

The below screen shows that
processing time of the algorithms;

The below screens shows that, the comparison between
the normal processing time and para
of the algorithms;

The below graph shows that,the no of d
dataset the keyword “Title”, It shows the no of duplicates
and processing time with in a window in all the methods.

Three approaches will give the results varying the
window sizes will get the duplicate count and processing
time as shown below,

WINDOW SIZE

3
0

CD DATASET: TITLE
PSNM

3, Issue-11, Nov- 2016]

6495(P) | 2456-1908(O)

 Page | 241

The below screen shows that the normal execution or
processing time of the algorithms;

shows that, the comparison between
the normal processing time and parallel processing time

he below graph shows that,the no of duplicates in CD

Title”, It shows the no of duplicates
and processing time with in a window in all the methods.

Three approaches will give the results varying the
window sizes will get the duplicate count and processing

DUPLICATE
COUNT

PROCESSING
TIME

1
6

0

1
0

2
9

7
1

9
9

8

1
6

0

9
8

3

CD DATASET: TITLE
PB PARALL AL SNM

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.37 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 242

From above results it can prove that proposed algorithms
are time efficient and scalable approaches. Parallel SNM
will take less time to compare with PSNM and PB.

V. CONCLUSION
In this paper, introduced two methods named, Progressive
SNM, progressive blocking and parallel SNM which
improve the efficiency of duplicate detection. By this
efficiency that time will be reduced for duplicate
detection. These two algorithms are generalized by the
traditional sorted neighborhood method only. Using these
two algorithms reduced the processing time of duplicate
detection as well as increased performance. Parallel SNM
achieves the better processing time and duplicate count
accurately compare to PSNM and PB. In future work,
implementing of all the time factors and methods to
improve the performance in parallel approach.

REFERENCES
[1] Papenbrock T., Heise A. and Naumann F. (2015),

„Progressive duplicate detection‟, Proc. IEEE Trans.
Know. Data Eng., vol. 27, No. 5, pp. 1316-1329.

[2] Whang S. E., Marmaros D., Molina H. (2012),„Pay-
as-you-go entity resoln‟, IEEE Trans. Know. Data
Eng., vol. No 25.5, pp. 1111–1124.

[3] Draisbach U, Naumann F, Szott S, Wonneberg O.
(2012),„Adaptive windows for duplicate detection‟,
Proc. IEEE 28th Int. Conf. Data Eng., pp. 1073-
1083.

[4] Draisbach U. and Naumann F. (2011), „A
generalization of blocking and windowingalgorithms
for duplicate detection‟,Proc. Int. Conf. Data
Knowl. Eng., pp. 18-24.

[5] Hassanzadeh O., Chiang F., Lee H.C., Miller R. J.
(2009), „Framework for Evaluating Clustering

Algorithms in Duplicate Detection‟,Proc. Very
Large Databases Endowment, Vol. 2, pp.1282-1293.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S.
Verykios, “Duplicate record detection: A survey,”
IEEE Trans. Knowl. Data Eng., vol. 19, no. 1, pp. 1–
16, Jan. 2007.

[7] H. B. Newcombe and J. M. Kennedy, “Record
linkage: Making maximum use of the discriminating
power of identifying information,” Commun. ACM,
vol. 5, no. 11, pp. 563–566, 1962.

[8] M. A. Hernandez and S. J. Stolfo, “Real-world data
is dirty: Data cleansing and the merge/purge
problem,” Data Mining Knowl. Discovery, vol. 2,
no. 1, pp. 9–37, 1998.

[9] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q.
Su, S. E. Whang, and J. Widom, ―Swoosh: a
generic approach to entity resolution,‖ VLDB
Journal.

[10] R. Baxter, P. Christen, and T. Churches, ―A
comparison of fast blocking methods for record
linkage,‖ in Proceedings of the ACM SIGKDD
Workshop on Data Cleaning, Record Linkage, and
Object Consolidation, 2003, pp. 25–27.

3
0

3
0

3
0 4
0

4
0

4
0 5
0

5
0

5
01

6
0

7
1 1

6
0

1
5

7

6
7 1

5
7

1
4

7

7
2 1

4
7

1
0

2
9

9
9

8

9
8

3

1
3

2
6

1
1

7
0

1
1

5
4

1
2

6
3

1
1

3
9

1
1

2
3

WINDOW SIZE DUPLICATE COUNT PROCESSING TIME

